Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A

نویسندگان

  • Ruth Murray
  • Dave Boyd
  • Paul N Levett
  • Michael R Mulvey
  • Michelle J Alfa
چکیده

BACKGROUND The increased severity of disease associated with the NAP1 strain of Clostridium difficile has been attributed to mutations to the tcdC gene which codes for a negative regulator of toxin production. To assess the role of hyper-production of Toxins A and B in clinical isolates of Clostridium difficile, two NAP1-related and five NAP1 non-related strains were compared. METHODS Sequencing was performed on tcdC, tcdR, and tcdE to determine if there were differences that might account for hyper-production of Toxin A and Toxin B in NAP1-related strains. Biological activity of Toxin B was evaluated using the HFF cell CPE assay and Toxin A biological activity was assessed using the Caco-2 Trans-membrane resistance assay. RESULTS Our results confirm that Toxin A and Toxin B production in NAP1-related strains and ATCC 43255 occurs earlier in the exponential growth phase compared to most NAP1-nonrelated clinical isolates. Despite the hyper-production observed in ATCC 43255 it had no mutations in tcdC, tcdR or tcdE. Analysis of the other clinical isolates indicated that the kinetics and ultimate final concentration of Toxin A and B did not correlate with the presence or lack of alterations in tcdC, tcdR or tcdE. CONCLUSION Our data do not support a direct role for alterations in the tcdC gene as a predictor of hyperproduction of Toxin A and B in NAP1-related strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile.

Severe Clostridium difficile associated disease is associated with outbreaks of the recently described BI/NAP1 epidemic clone. This clone is characterized by an 18-bp deletion in the tcdC gene and increased production of toxins A and B in vitro. TcdC is a putative negative regulator of toxin A&B production. We characterized tcdC genotypes from a collection of C. difficile isolates from a hospit...

متن کامل

Toxin profiles and antimicrobial resistance patterns among toxigenic clinical isolates of Clostridioides (Clostridium) difficile

Objective(s): Clostridioides (Clostridium) difficile infection as a healthcare-associated infection can cause life-threatening infectious diarrhea in hospitalized patients. The aim of this study was to investigate the toxin profiles and antimicrobial resistance patterns of C. difficile isolates obtained from hospitalized patients in Shiraz, Iran.Mater...

متن کامل

The effect of clostridium difficile Toxins Aand B on ligated rabbit IIeal loop and cultured cell link BK

clostridium difficile has been recognized as the major cause of pseudomembranous colitis.this bacterium produces two toxins(an enterotoxin -cytotoxin and a potent cytotoxin called toxin A and toxin B erespectively).these toxins have implicated in pathogenesis of the disease.however,histopathological effects of their molecular mass less than 100KDa have been essayed.in the persent study,we exami...

متن کامل

EFFECT OF AMYGDALUS COMMUNIS ON GROWTH AND TOXIN PRODUCTION OF CLOSTRIDIUM DIFFICILE

It is known that the major etiologic agent of pseudomembranous colitis in man is Clostridium difficile. With respect to traditional use of almond paste in the treatment of infantile diarrhea, we studied the effects of the aqueous extract of Amygdalus communis (AEAC) on the growth and toxin production of Clostridium difficile in culture medium and the rabbit ligated ileal loop. Three groups...

متن کامل

Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates.

The pathogenicity locus (PaLoc) of Clostridium difficile contains toxin A and B genes and three accessory genes, including tcdD and tcdC, which are supposed to code for the positive and negative regulators of toxin expression, respectively. Different studies have described variations in C. difficile toxin A and B genes, but little is known about C. difficile variants for the accessory genes. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009